rus | en

Все полезные статьи

Главная > Полезная информация > Полезные статьи

МОНИТОРИНГ СОСТОЯНИЯ ОБОРУДОВАНИЯ В ЦЕЛЯХ ОПРЕДЕЛЕНИЯ ПРИЧИН ВОЗНИКНОВЕНИЯ НЕИСПРАВНОСТЕЙ


Почему некоторые механизмы быстро приходят в неисправность, в то время как другие работают долгие годы?

Существует восемь причин отказа компонентов промышленного оборудования: трение, коррозия, усталость, граничная смазка, образование отложений, эрозия, кавитация и электрический разряд. Возникновению этих явлений способствует действие различных сил, в том числе химически активных соединений, окружающей среды, температуры и времени. С помощью мониторинга состояния масла и применения соответствующих методов измерений можно обнаружить эти причины, предпринять соответствующие меры и предотвратить возможные неисправности.


Причины возникновения неисправностей

Как правило, к основным причинам сбоев в работе деталей промышленного оборудования, относятся четыре механизма износа: трение, коррозия, усталость и режим граничного смазывания. Последний режим связан с адгезией и износом от трения скольжения.

ОСНОВНЫЕ ПРИЧИНЫ И МЕХАНИЗМЫ СИЛА АКТИВНЫЕ СОЕДИНЕНИЯ СРЕДА ТЕМПЕРАТУРА ВРЕМЯ
Трение Изнашивание свободными частицами Твердые частицы, небольшой клиренс Смазка Общее число оборотов
Коррозия Стирание Коррозионно- активный газ/жидкость Металлические поверхности Уравнение Аррениуса Общее время воздействия
Усталость Динамическое напряжение сдвига Гидродинамический контакт или другие повторяющиеся контакты Общее количество 10X циклов
Граничная смазка (Адгезия) Нагрузка (вязкость и скорость) Недостаточная смазка Трение из-за непосредственного контакта металлов Длительность контакта
Образование отложений Статическое электричество Дисперсия и коалесценция На грани насыщения Температурные циклы Диффузионный перенос
Эрозия Импульс частицы Скорость газа/жидкости Совокупное воздействие
Кавитация Ударная волна Общее количество ударных волн
Электрический разряд Импульс искры/взрыва Ток по валу Быстрый нагрев Общее количество взрывов


Трение

Износ от трения, как правило, является результатом изнашивания свободными частицами, причиной которому служит загрязнение системы смазывания пылью. Пыль намного тверже стали и, попадая в ловушку между двумя движущимися поверхностями, врезается в более мягкий металл и начинает вырезать своеобразные желобки в твердом металле. Это напоминает процесс зачистки стали наждачной бумагой. Смазочные жидкости позволяют свести трение и адгезию к минимуму, эффективно уменьшая степень истирания частицами при последующих оборотах компонентов механизма. Трение также включает в себя трение в локальных местах, которое приводит к образованию высокочастотных волн напряжения, распространяющихся по металлу на короткие расстояния. Энергию волны напряжения можно обнаружить путем проведения анализа высокочастотных волн напряжения с использованием такого прибора, как Emerson PeakVue™. Контроль запыления системы смазки частицами следует проводить в целях удаления из системы остатков частиц и минимизации проникновения пыли через воздушные отверстия, уплотнения и поступающие смазочные материалы. Соблюдение заданного уровня чистоты, в основе которого лежит определение количества частиц по стандартам ASTM D7416, D7647 и D7596, играет важную роль в вопросе контроля загрязнения частицами.

Частицы износа от трения по форме напоминают стружку, которую часто можно увидеть после работы на токарном станке. Иногда для описания этих частиц используется слово «ленточки». В целях исследования частиц рекомендуется проводить анализ частиц износа (АЧИ). Требования к проведению такого анализа приведены в стандарте ASTM D7684. Для его проведения используется методика, приведенная в стандартах ASTM D7416 и D7690. Кроме того, можно пользоваться методикой обнаружения частиц и их классификацией, приведенной в стандарте D7596.

Частицы износа от трения

Частицы износа от трения


Коррозия

Коррозия - это химическая реакция, которая ускоряется под воздействием температуры. Правило скорости Аррениуса гласит, что скорость химической реакции вырастает в два раза при каждом повышении температуры на 10°С. Коррозия металлических поверхностей, как правило, является само- ограничивающимся процессом, так как оксиды металла на поверхностях образуются только до определенной глубины. Оксидные слои являются очень мягкими, и их легко стереть. Трение обнажает нижний слой металла и способствует более глубокому окислению при наличии окисляющих агрессивных сред.

Коррозионный износ обычно вызывается воздействием влаги или другой агрессивной жидкости или газа. Образование минеральных и органических кислот может быть инициировано ухудшением свойств смазочного материала по причине воздействия кислорода при повышенных температурах. Когда такие вещества проникают в смазку, как правило, запускается процесс окисления металлических поверхностей.

Частицы коррозионного износа

Частицы коррозионного износа

К чувствительным методам обнаружения в масле веществ, вызывающих коррозию, относится титрование по методу Карла Фишера, определение диэлектрической проницаемости с временным разрешением по стандарту ASTM D7416*, инфракрасная спектроскопия, определение кислотного и щелочного чисел. Самым лучшим методом определения элементов коррозионного износа в масле является спектрометрический анализ ГСМ, например, с использованием фильтра Rotrode (ASTM D6595). Он идеально подходит для контроля остатков мелких частиц (5 мкм и менее) в миллионных долях. Остатки продуктов загрязнения коррозионного износа обычно представляют собой оксид металла, а большинство оксидов металлов имеют очень маленький размер и окрашены в черный цвет. Тем не менее, иногда можно увидеть хлопья ржавчины красноватого цвета. Для проведения этих анализов идеально подходят указанные выше методы АЧИ (анализа частиц износа).

* — Стандартный тест для анализа находящихся в эксплуатации смазочных материалов с использованием определения пяти параметров (диэлектрической проницаемости, диэлектрической проницаемости с временным разрешением и переключением магнитных полей, лазерного счетчика частиц, микроскопического анализа загрязнений и определение вязкости на орбитальном вискозиметре).


Усталость

Усталостный износ является следствием образования на поверхности трещин. Причиной образования трещин является совокупная нагрузка контакта качения между роликом, кольцом и делительной окружностью зубчатого колеса. Усталость представляет собой деформационное упрочнение, в процессе которого дислокационные дефекты перемещаются вдоль плоскостей скольжения по металлической кристаллической структуре. В конце концов, металлическое упрочнение превращается в поверхностные трещины и сопровождается акустической эмиссией, напоминающей миниатюрные землетрясения.

Усталостный износ начинается с возникновения трещин, которые затем соединяются друг с другом, и, в конечном итоге, образуется скол. Это происходит, когда трещины пересекают поверхности, а крупные фрагменты и пластинки вымываются смазочной жидкостью. Последующие контакты качения приводят к образованию более крупных фрагментов и пластинок.

С помощью акустической эмиссии и анализа волн напряжения с использованием PeakVue технологии можно обнаружить поверхностные трещины, которые являются причиной возникновения усталостного износа. С помощью рентгеновской флуоресцентной спектроскопии (РФС) и путем определения концентрации железосодержащих частиц можно обнаружить продукты износа, которые попадают в смазочный материал.

При проведении анализа этих частиц с помощью методов АЧИ можно обнаружить, что они имеют форму неоднородных фрагментов или пластинок. Также в целях исследования частиц можно воспользоваться методами, приведенными в стандарте ASTM D7596 (тест для автоматического подсчета размера и формы частиц).

Частицы усталостного износа

Частицы усталостного износа


Граничное смазывание (адгезия)

Граничное смазывание это режим смазки, при котором нагрузка передается в процессе непосредственного контакта металлов. Большинство механизмов имеют такую конструкцию, при которой между поверхностями, несущими нагрузку, в процессе смазки образуется масляная пленка. Существует четыре причины возникновения режима граничной смазки: отсутствие смазки, низкая вязкость, чрезмерная нагрузка и низкая скорость (или любые из этих причин в комплексе).

Достаточное количество смазки в контактах качения образует слой гидродинамической смазки, которую, как правило, можно обнаружить на антифрикционных подшипниках, где толщина пленки жидкости между роликом и кольцом обычно составляет от 1 до 5 мкм. Достаточное количество смазки, наносимой на подшипники скольжения, образует слой гидродинамической смазки с толщиной пленки жидкости от 50 до 100 микрон.

Когда смазка по какой-либо из четырех причин, перечисленных выше, утрачивает свои функции, в процессе непосредственного контакта металлов возникает нагрузка между подвижными поверхностями, и появляется трение. Температура в месте контакта стремительно возрастает, в результате чего образуются подтаявшие, густые и окисленные продукты износа. Контактное трение также является источником громкого ультразвукового и акустического шума.

Контактные ультразвуковые измерения и методы анализа высокочастотных волн напряжения, например, с использованием PeakVue технологии, позволяют обнаружить трение, вызванное режимом граничной смазки (контактом металлов). Также можно применять методики, позволяющие определить степень разложения масла, такие как вискозиметрия, определение диэлектрической проницаемости с временным разрешением (ASTM D7416), кислотного и щелочного чисел. Количество частиц можно определить с помощью ферромагнитных методик и РФА.

Частицы усталостного износа, которые можно обнаружить с помощью методик АЧИ, в том числе по стандарту ASTM D7596, как правило, представляют собой результат воздействия предельных температур, которое сопровождается трением металлических поверхностей.


Образование отложений

Этот механизм отличается от других тем, что в процессе образования отложений материал генерируется, а не удаляется. И, несмотря на то, что образование отложений не имеет ничего общего с износом, оно также является причиной повреждения компонентов системы и закупоривания отверстий.

Образование отложений на компонентах механизма может привести к возникновению серьезных проблем. Материалы, из которых образуются отложения, обычно переносятся на поверхность механизма газом или жидкостью, где они и оседают. Передние кромки и другие поверхности вентиляторов и лопастных колес обычно накапливают переносимые газом или жидкостью волокна и твердые частицы. Эти скопления приводят к нарушению баланса и снижению производительности. На перегородках часто собираются твердые частицы и шлам, из-за чего становится очень трудно обеспечить надлежащий уровень чистоты системы до и после сборной емкости циркулирующего масла. Регулирующие клапаны и другие внутренние поверхности иногда накапливают лаковые отложения, что может серьезно сказаться на их производительности.


Эрозия

Эрозия – это удаление материала под воздействием частиц. Пескоструйная очистка является отличным примером эрозионного износа. Автовладельцы в пустынях часто наносят на свои автомобили дополнительный слой прозрачного полимера для защиты лакокрасочного покрытия. В противном случае, краска на капоте и крыльях быстро отслаивается, подвергая металл воздействию окружающей среды.

Самым простым методом мониторинга состояния является оптическое определение отложений, накоплению которых способствует попадание жидкой среды на твердую поверхность. Проведение визуального осмотра рекомендуется для обнаружения следов эрозии. Как правило, проводить анализ частиц износа, вызванного эрозией, нецелесообразно, поскольку количество твердых частиц, которые являются причиной появления эрозии, очень большое.

Частицы износа образованные трением скольжения

Частицы износа образованные трением скольжения


Кавитация

Кавитационный износ, как правило, образуется на обратной стороне лопастей. Низкое давление создает пустоты или пузырьки в жидкости, которые схлопываются при повышении давления. Затем скорость жидкости растет, и она заполняет пустоты. По мере того как жидкость заполняет образующиеся пустоты, ее скорость достигает сверхзвуковых значений, и ударные волны повреждают лопасти с обратной стороны. Повреждением считается удаление материала и образование пор на поверхности. Определить кавитацию можно при помощи акустической эмиссии и анализа волн напряжения, например, с использованием технологий PeakVue. Однако вряд ли удастся обнаружить кавитацию на лопастях с помощью анализа отложений. Поэтому через определенные промежутки времени рекомендуется проводить визуальный осмотр лопастей, чтобы вовремя обнаружить признаки кавитации и другие следы физического износа.


Электрический разряд

Иногда в электродвигателях образуются подшипниковые токи. Подшипниковый ток – это ток, который проходит вдоль вала, проникает сквозь пленку жидкости, покрывающей подшипник, и идет обратно через корпус механизма в землю. Как правило, толщина границы смазочной пленки роликовых подшипников составляет примерно 1 мкм, подшипников скольжения - 50 мкм. Смазочные материалы являются хорошими диэлектрическими жидкостями. Электрические разряды создают дуги в порах пленки жидкости, проникая в металлические поверхности с обеих сторон и повреждая поверхность, значительно нагревая ее и подвергая ее микроскопическим электрическим взрывам. В случае с роликовыми подшипниками этот процесс иногда называют «флютингом» (от англ. fluting – нарезка канавок, нанесение бороздок) из-за симметричного рисунка, структура которого соответствует расположению роликов при многократном повторении электрического разряда. Подшипниковые токи можно обнаружить с помощью чувствительного анализатора или мультиметра, предназначенного для обнаружения тока, проходящего от земли через металлическую щетку, которая контактирует с вращающимся валом. Присутствие электрических взрывов можно обнаружить методом акустической эмиссии или путем измерения волн напряжения, например, с применением технологии PeakVue. Частицы электрического разряда, как правило, выбрасываются в виде расплавленного металла, который затвердевает, как сварочный шлак, в виде сферы с черной, частично окисленной поверхностью. В отличие от сварочного шлака, размер частиц которого, как правило, составляет от 50 до 100 микрон, частицы электрического разряда могут быть значительно меньше.


Сочетание виброанализа и анализа масла

В целях эффективного мониторинга состояния вращающихся компонентов оборудования на промышленных установках рекомендуется совмещать анализ вибрации, и анализ масла. Виброанализ охватывает целый ряд измерений, в том числе резонанс, люфт, нарушение соосности, дисбаланс, неправильную сборку и работу в неустановившихся режимах, таких как пуск или работа в холостом режиме. Анализ масла прекрасно подходит для проведения входного контроля смазочных материалов, контроля загрязнений, измерения количества воды и пыли в масле, а также определения степени разрушения характеристик масла, не позволяющих в дальнейшем его использовать. Анализ масла и анализ вибрации в сочетании друг с другом обеспечивают наличие дополнительной прогнозной оценки степени износа механизма и возможности отказа компонента по прогрессивной шкале от «в стадии развития» до «критическое».


Атлас частиц износа

Атлас частиц износаДополнительную информацию, по анализу продуктов износа, можно найти в издании «Атлас частиц износа».

Атлас включает 192 страницы. В нем содержится информация об определении различных типов частиц износа, описание типов износа, в результате которых образуются частицы износа, описание последствий износа и разъяснение методов, которые применяются для проведения анализа частиц износа. Заказать Атлас можно на сайте store.noria.com.

Виброанализ является неразрушающим способом, позволяющим обнаружить нарушение баланса и снижение производительности, вызванного образованием отложений на деталях ротора. ИК-спектроскопия, мембранная колориметрия и циклическая вольтамперометрия применяются для решения многих вопросов, связанных с механизмами электрохимического осаждения. В узлах, где скопления отложений невозможно избежать, например, установки подготовки воздуха и насосы, рекомендуется регулярно проводить визуальные осмотры и чистку механизмов. С помощью мембранной колориметрии можно обнаружить различные виды частиц, полутвердые и цветные материалы, которые накапливаются на поверхностях и приводят к образованию лакообразного нагара.